
Microservice Architectures Dr. Andreas Schroeder

1

About me

Dr. Andreas Schroeder

codecentric AG

Elsenheimerstr 55A

80687 München

andreas.schroeder@codecentric.de

www.codecentric.de

blog.codecentric.de

250+ staff

12 offfices (9 in Germany)

Experts for developing custom IT solutions

Involvement in the IT community via

• twitter

• github

• meetup

• …

2

Agenda

• The Pain

• Therefore, Microservices

• Stable Interfaces: HTTP, JSON, REST

• Characteristics

• Comparison with Precursors

• Challenges

• With special focus on Service Versioning

• Conclusion

3

The Pain

Observed problems

• Area of consideration

• Web systems

• Built collaboratively by several development teams

• With traffic load that requires horizontal scaling

(i.e. load balancing across multiple copies of the system)

• Observation

• Such systems are often built as monoliths or layered systems (JEE)

5

A Software Monolith

• One build and deployment unit

• One code base

• One technology stack (Linux, JVM, Tomcat, Libraries)

Benefits

• Simple mental model for developers

• one unit of access for coding, building, and deploying

• Simple scaling model for operations

• just run multiple copies behind a load balancer

Software Monolith

6

Problems of Software Monoliths

• Huge and intimidating code base for developers

• Development tools get overburdened

• refactorings take minutes

• builds take hours

• testing in continuous integration takes days

• Scaling is limited

• Running a copy of the whole system is resource-intense

• It doesn’t scale with the data volume out-of-the-box

• Deployment frequency is limited

• Re-deploying means halting the whole system

• Re-deployments will fail and increase the perceived risk of deployment

7

Layered Systems

A layered system decomposes a monolith into layers

• Usually: presentation, logic, data access

• At most one technology stack per layer

• Presentation: Linux, JVM, Tomcat, Libs, EJB client, JavaScript

• Logic: Linux, JVM, EJB container, Libs

• Data Access: Linux, JVM, EJB JPA, EJB container, Libs

Benefits

• Simple mental model, simple dependencies

• Simple deployment and scaling model

Presentation

Logic

DB

Data Access

8

Problems of Layered Systems

• Still huge codebases (one per layer)

• … with the same impact on development, building, and deployment

• Scaling works better, but still limited

• Staff growth is limited: roughly speaking, one team per layer works well

• Developers become specialists on their layer

• Communication between teams is biased by layer experience (or lack thereof)

9

Growing systems beyond the limits

• Applications and teams need to grow beyond the limits imposed by monoliths and layered systems, and they

do – in an uncontrolled way.

• Large companies end up with landscapes of layered systems that often interoperate in undocumented ways.

• These landscapes then often break in unexpected ways.

How can a company grow and still have a working IT architecture and vision?

• Observing and documenting successful companies (e.g. Amazon, Netflix) lead to the definition of

microservice architecture principles.

10

Therefore, Microservices

History

• 2011: First discussions using this term at

a software architecture workshop near Venice

• May 2012: microservices settled as the most

appropriate term

• March 2012: “Java, the Unix Way” at 33rd degree

by James Lewis

• September 2012: “µService Architecture“ at

Baruco by Fred George

• All along, Adrian Cockroft pioneered this style

at Netflix as “fine grained SOA”

James Lewis

Adrian Cockroft

Fred George

http://martinfowler.com/articles/microservices.html#footnote-etymology

12

Underlying principle

On the logical level, microservice architectures are defined by a

functional system decomposition into manageable

and independently deployable components

• The term “micro” refers to the sizing: a microservice must be manageable by a single development team (5-9

developers)

• Functional system decomposition means vertical slicing

(in contrast to horizontal slicing through layers)

• Independent deployability implies no shared state and inter-process communication (often via HTTP REST-ish

interfaces)

13

More specifically

• Each microservice is functionally complete with

• Resource representation

• Data management

• Each microservice handles one resource (or verb), e.g.

• Clients

• Shop Items

• Carts

• Checkout

Microservices are fun-sized services, as in

 “still fun to develop and deploy”

14

Independent Deployability is key

It enables separation and independent evolution of

• code base

• technology stacks

• scaling

• and features, too

15

Independent code base

Each service has its own software repository

• Codebase is maintainable for developers – it fits into their brain

• Tools work fast – building, testing, refactoring code takes seconds

• Service startup only takes seconds

• No accidental cross-dependencies between code bases

16

Independent technology stacks

Each service is implemented on its own technology stacks

• The technology stack can be selected to fit the task best

• Teams can also experiment with new technologies within a single microservice

• No system-wide standardized technology stack also means

• No struggle to get your technology introduced to the canon

• No piggy-pack dependencies to unnecessary technologies or libraries

• It‘s only your own dependency hell you need to struggle with

• Selected technology stacks are often very lightweight

• A microservice is often just a single process that is started via command line, and not code and

configuration that is deployed to a container.

17

Independent Scaling

Each microservice can be scaled independently

• Identified bottlenecks can be addressed directly

• Data sharding can be applied to microservices as needed

• Parts of the system that do not represent bottlenecks can

remain simple and un-scaled

Scaling

Cube

horizontal & vertical

fu
n

ct
io

n
a

l d
ec

o
m

p
.

JEE Pet Store

Netflix

18

Independent evolution of Features

Microservices can be extended without affecting other services

• For example, you can deploy a new version of (a part of) the UI without re-deploying the whole system

• You can also go so far as to replace the service by a complete rewrite

But you have to ensure that the service interface remains stable

19

Stable Interfaces – standardized communication

Communication between microservices is often standardized using

• HTTP(S) – battle-tested and broadly available transport protocol

• REST – uniform interfaces on data as resources with known manipulation means

• JSON – simple data representation format

REST and JSON are convenient because they simplify interface evolution

(more on this later)

20

Stable Interfaces: HTTP, JSON, REST

HTTP Example

GET / HTTP/1.1
Host: www.codecentric.de
Connection: keep-alive
Cache-Control: max-age=0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)
 Chrome/38.0.2125.104 Safari/537.36
Accept-Encoding: gzip,deflate
Accept-Language: de-DE,de;q=0.8,en-US;q=0.6,en;q=0.4
Cookie: …

HTTP/1.1 200 OK
Date: Tue, 21 Oct 2014 06:34:29 GMT
Server: Apache/2.2.29 (Amazon)
Cache-Control: no-cache, must-revalidate, max-age=0
Content-Encoding: gzip
Content-Length: 8083
Connection: close
Content-Type: text/html; charset=UTF-8

22

HTTP

• Available verbs GET, POST, PUT, DELETE (and more)

• Safe verbs: GET (and others, but none of the above)

• Non-idempotent: POST (no other verb has this issue)

• Mechanisms for

• caching and cache control

• content negotiation

• session management

• user agent and server identification

• Status codes in response (200, 404, etc) for

information, success, redirection, client error, server error

• Rich standardized interface for interacting over the net

23

JSON

• Minimal and popular data representation format

• Schemaless in principle, but can be validated if need be

Example of two bank accounts:

json.org

[{
 "number" : 12345,
 "balance" : -20.00,
 "currency" : "EUR"
},
{
 "number" : 12346,
 "balance" : 120.00,
 "currency" : "USD"
}]

24

REST

• REST is an architectural style for systems built on the web. It consists of a set of coordinated architectural

constraints for distributed hypermedia systems.

• REST describes how to build systems on battle-tested protocols and standards that are already out there (like

HTTP)

• REST describes the architectural ideas behind HTTP, and how HTTP can be used to do more than serving static

web content

25

REST Architectural Constraints

• Client-Server: Separation of logic from user interface

• Stateless: no client context on the server

• Cacheable: reduce redundant interaction between client and server

• Layered System: intermediaries may relay communication between client and server (e.g. for load balancing)

• Code on demand: serve code to be executed on the client (e.g. JavaScript)

• Uniform interface

• Use of known HTTP verbs for manipulating resources

• Resource manipulation through representations which separated from internal representations

• Hypermedia as the engine of application state (HATEOAS):
the response contains all allowed operations and the resource identifiers needed to trigger them

26

HATEOAS example in JSON

{ "number" : 12345,
 "balance" : -20.00,
 "currency" : "EUR",
 "links" : [{
 "rel" : "self",
 "href" : "https://bank.com/account/12345"
 }, {
 "rel" : "deposit",
 "href" : "https://bank.com/account/12345/deposit"
 }]
}

Resource representation

relation name (known by clients)

URI for operation

27

Stable Interfaces

• HTTP offers a rich set of standardized interaction mechanisms

that still allow for scaling

• JSON offers a simple data format that can be (partially) validated

• REST provides principles and ideas for leveraging HTTP and JSON to build evolvable microservice interfaces

Be of the web, not behind the web

Ian Robinson

28

Characteristics

Componentization via Services

• Interaction mode: share-nothing, cross-process communication

• Independently deployable (with all the benefits)

• Explicit, REST-based public interface

• Sized and designed for replaceability

• Upgrading technologies should not happen big-bang, all-or-nothing-style

• Downsides

• Communication is more expensive than in-process

• Interfaces need to be coarser-grained

• Re-allocation of responsibilities between services is harder

30

Favors Cross-Functional Teams

• Line of separation is along functional boundaries, not along tiers

VS

Presentation

Logic

DB

Data Access

31

Decentralized Governance

Principle: focus on standardizing the relevant parts, and

leverage battle-tested standards and infrastructure

Treats differently

• What needs to be standardized

• Communication protocol (HTTP)

• Message format (JSON)

• What should be standardized

• Communication patterns (REST)

• What doesn‘t need to be standardized

• Application technology stack

32

Decentralized Data Management

• OO Encapsulation applies to services as well

• Each service can choose the persistence solution that

fits best its

• Data access patterns

• Scaling and data sharding requirements

• Only few services really need

enterprisey persistence

33

Infrastructure Automation

• Having to deploy significant number of services

forces operations to automate the infrastructure for

• Deployment (Continuous Delivery)

• Monitoring (Automated failure detection)

• Managing (Automated failure recovery)

• Consider that:

• Amazon AWS is primarily an internal service

• Netflix uses Chaos Monkey to further enforce

infrastructure resilience

34

Comparisons with Precursors

Service-Oriented Architecture

D
A

TA

S
E

R
V

IC
E

O

R
C

H
E

S
TR

A
TI

O
N

36

Service-Oriented Architecture

SOA systems also focus on functional decomposition, but

• services are not required to be self-contained with data and UI, most of the time the contrary is pictured.

• It is often thought as decomposition within tiers, and introducing another tier – the service orchestration tier

In comparison to microservices

• SOA is focused on enabling business-level programming through business processing engines and languages

such as BPEL and BPMN

• SOA does not focus on independent deployment units and its consequences

• Microservices can be seen as “SOA – the good parts”

37

Component-Based Software Engineering

Underlying functional decomposition principle of microservices is basically the same.

Additionally, the following similarities and differences exist:

• State model

• Many theoretical component models follow the share-nothing model

• Communication model

• Component technologies often focus on simulating in-process communication across processes (e.g. Java
RPC, OSGi, EJB)

• Microservice communication is intra-process, serialization-based

• Code separation model

• Component technologies do require code separation

• Components are often developed in a common code repository

• Deployment model

• Components are often thought as being deployed into a uniform container

38

Challenges

Fallacies of Distributed Computing

Essentially everyone, when they first build a distributed application, makes the following eight
assumptions. All prove to be false in the long run and all cause big trouble and painful learning
experiences.

• The network is reliable

• Latency is zero

• Bandwidth is infinite

• The network is secure

• Topology doesn‘t change

• There is one administrator

• Transport cost is zero

• The network is homogeneous

 Peter Deutsch

40

Microservices Prerequisites

Before applying microservices, you should have in place

• Rapid provisioning

• Dev teams should be able to automatically provision new infrastructure

• Basic monitoring

• Essential to detect problems in the complex system landscape

• Rapid application deployment

• Service deployments must be controlled and traceable

• Rollbacks of deployments must be easy

Source
http://martinfowler.com/bliki/MicroservicePrerequisites.html

41

http://martinfowler.com/bliki/MicroservicePrerequisites.html
http://martinfowler.com/bliki/MicroservicePrerequisites.html

Evolving interfaces correctly

• Microservice architectures enable independent evolution of services – but how is this done without breaking

existing clients?

• There are two answers

• Version service APIs on incompatible API changes

• Using JSON and REST limits versioning needs of service APIs

• Versioning is key

• Service interfaces are like programmer APIs – you need to know which version you program against

• As service provider, you need to keep old versions of your interface operational while delivering new

versions

• But first, let’s recap compatibility

42

API Compatibility

There are two types of compatibility

• Forward Compatibility

• Upgrading the service in the future will not break existing clients

• Requires some agreements on future design features, and the design of new versions to respect old

interfaces

• Backward Compatibility

• Newly created service is compatible with old clients

• Requires the design of new versions to respect old interfaces

The hard type of compatibility is forward compatibility!

43

Forward compatibility through REST and JSON

REST and JSON have a set of inherent agreements that benefit forward compatibility

• JSON: only validate for what you really need, and ignore unknown object fields (i.e. newly introduced ones)

• REST: HATEOAS links introduce server-controlled indirection between operations and their URIs

{ "number" : 12345,
 ...
 "links" : [{
 "rel" : "deposit",
 "href" : "https://bank.com/account/12345/deposit"
 }]
}

"https://accounts.bank.com/12345/deposit"

44

Compatibility and Versioning

Compatibility can’t be always guaranteed, therefore versioning schemes (major.minor.point) are introduced

• Major version change: breaking API change

• Minor version change: compatible API change

Note that versioning a service imposes work on the service provider

• Services need to exist in their old versions as long as they are used by clients

• The service provider has to deal with the mapping from old API to new API as long as old clients exist

45

REST API Versioning

Three options exist for versioning a REST service API

1. Version URIs

 http://bank.com/v2/accounts

2. Custom HTTP header

 api-version: 2

3. Accept HTTP header

 Accept: application/vnd.accounts.v2+json

Which option to choose?

• While developing use option 1, it is easy to pass around

• For production use option 3, it is the cleanest one

46

REST API Versioning

• It is important to

• version your API directly from the start

• install a clear policy on handling unversioned calls

• Service version 1?

• Service most version?

• Reject?

Sources
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://codebetter.com/howarddierking/2012/11/09/versioning-restful-services/

47

http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://www.troyhunt.com/2014/02/your-api-versioning-is-wrong-which-is.html
http://codebetter.com/howarddierking/2012/11/09/versioning-restful-services/
http://codebetter.com/howarddierking/2012/11/09/versioning-restful-services/
http://codebetter.com/howarddierking/2012/11/09/versioning-restful-services/
http://codebetter.com/howarddierking/2012/11/09/versioning-restful-services/
http://codebetter.com/howarddierking/2012/11/09/versioning-restful-services/

Further Challenges

• Testing the whole system

• A single microservice isn‘t the whole system.

• A clear picture of upstream and downstream services is needed for integration testing

• Transactions

• Instead of distributed transactions, compensations are used (as in SOA)

• Authentication

• Is often offloaded to reverse proxies making use auf authentication (micro)services

• Request logging

• Pass along request tokens

• Add them to the log

• Perform log aggregation

48

Conclusion

Microservices: just …?

• Just adopt?

• No. Microservices are a possible design alternative for new web systems and an evolution path for existing

web systems.

• There are considerable amounts of warnings about challenges, complexities and prerequisites of

microservices architectures from the community.

• Just the new fad?

• Yes and no. Microservices is a new term, and an evolution of long-known architectural principles applied in

a specific way to a specific type of systems.

• The term is dev and ops-heavy, not so much managerial.

• The tech landscape is open source and vendor-free at the moment.

50

Summary

• There is an alternative to software monoliths

• Microservices: functional decomposition of systems into

 manageable and independently deployable services

• Microservice architectures means

• Independence in code, technology, scaling, evolution

• Using battle-tested infrastructure (HTTP, JSON, REST)

• Microservice architectures are challenging

• Compatibility and versioning while changing service interfaces

• … transactions, testing, deploying, monitoring, tracing is/are harder

Microservices are no silver bullet, but may be the best way forward for

• large web systems

• built by professional software engineers

51

Sources and Further Reading

• http://martinfowler.com/articles/microservices.html

• http://www.infoq.com/articles/microservices-intro

• http://brandur.org/microservices

• http://davidmorgantini.blogspot.de/2013/08/micro-services-what-are-micro-services.html

• http://12factor.net/

• http://microservices.io/

• https://rclayton.silvrback.com/failing-at-microservices

• http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii

• http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-
melee.html

• http://capgemini.github.io/architecture/microservices-reality-check/

52

http://martinfowler.com/articles/microservices.html
http://www.infoq.com/articles/microservices-intro
http://www.infoq.com/articles/microservices-intro
http://www.infoq.com/articles/microservices-intro
http://www.infoq.com/articles/microservices-intro
http://brandur.org/microservices
http://brandur.org/microservices
http://brandur.org/microservices
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://microservices.io/
http://12factor.net/
http://microservices.io/
https://rclayton.silvrback.com/failing-at-microservices
https://rclayton.silvrback.com/failing-at-microservices
https://rclayton.silvrback.com/failing-at-microservices
https://rclayton.silvrback.com/failing-at-microservices
https://rclayton.silvrback.com/failing-at-microservices
https://rclayton.silvrback.com/failing-at-microservices
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://www.activestate.com/blog/2014/09/microservices-and-paas-part-iii
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://capgemini.github.io/architecture/microservices-reality-check/
http://capgemini.github.io/architecture/microservices-reality-check/
http://capgemini.github.io/architecture/microservices-reality-check/
http://capgemini.github.io/architecture/microservices-reality-check/
http://capgemini.github.io/architecture/microservices-reality-check/
http://capgemini.github.io/architecture/microservices-reality-check/
http://capgemini.github.io/architecture/microservices-reality-check/
http://capgemini.github.io/architecture/microservices-reality-check/

Pictures

• Slide 1: Cover Picture Boris Macek

• Slide 6: Monolith Martin Dosch

53

